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SECTION I

INTRODUCTION

.Dynamic stability or instability of elastic structures has drawn
considerable attention in the past thirty yvears. The importance of rhe
subject lies primarily in ihe constant demand for lightweight efficient
structures, which requires a good understanding of how structures respond
to loads that induce dynamic effects.

The term "Dynamic Stability' encompasses many classes of problems
and it has been used, by the various investigators, in connection with a
particular study. Therefore it is not surprising that there are various
interpretations of the meaning of the term.

The class of problems falling in the category of parametric excitation
are the best defined, conceived and understood problems of dynamic stability.
An excellent treatment and bibliography can bhe found in the book by V. Vv,
Bolotin [1]. As a matter of fact, Bolotin applies the term "Dynamic Stability"
only to problems of parametric excitation.

In general, problems which deal with stability of motion have concerned
for many years researchers in many fields of engineering. Definitions for
stability and related criteria, as developed through the years, are given by
T. J, Stoker [2]. Additional references [2-6] provide the necessary details
as applied to a variety of problems. Some of these criteria find wide uses
in problems of stability‘and control of aircraft [7], control theory [8], and
many problems in fluid mechanics, combustion and, to a certain extent, elastic
structures under dynamic conditions,.

Moreover, many authors refer to problems of the "follower force" type
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as problems of dynamic stability [9-10]. The primary reason for this

is that critical conditions can be cobtained (in many cases) only through
the use of the "kinetic'" or "dynamic" approach to static stability prob-
lems (flutter instead of divergence type of instability).

In addition, problems of aeroelastic instability and flow-induced
instability (fluid flowing through‘pipes) also fall under the general
heading of dynamic stability.

A large class of structural problems that has received attention
recently and does qualify as a category of dynamic stability is that of
impulsively loaded configurations and configurations which are suddenly
loaded with loads of constant magnitude and infinite duration. These
two t&pes of loads may be thought of as mathematical idealizations of
blast loads of (a) large decay rates and small decay times and (b) small
decay rates and large decay times respectively. In addition, these types
of loads may be considered as representative of impact loads. Of course,
there are other physical explanations for such loads. For both types of
loads mentioned above the concept of dynamic stability is related with
the observation that for sufficiently small values of the loading the
system simply oscillates (linearly or non-linearly) about the near static
equilibrium point and the corresponding amplitudes of oscillation are
sufficiently small. If the loading is increcased, some systems will experi-
ence large amplitude oscillations or in general divergent type of motion,
For this phenomenon to happen the configuration (turns out) must possess
two or more static equilibrium positions and '"tunneling-through' [11]
occurs by having trajectories that can pass through an unstable static equi-

librium point. Consequently, the methodologies developed by the various
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investigators (including criteria and estimates) are for structural
configurations that exhibit snap-through buckling, when loaded quasi-
statically.

" Solutions to such problems started appearing in the open literature
in the early 1950's. Hoff and Bruce [12] considered the dynamic stability
of a pinned half-sine arch under a half-sine distributed load. The ideal
impulse problem as well as the case of a suddenly applied load with constant
magnitude and infinite duration were considered in this report. Budiansky
and Roth [13] in studying the axisymmetric behavior of a shallow spherical
cap under suddenly applied loads defined the load to be critical, when the
transient response increases suddenly with very little increase in the
magnitude of the load. This concept was adopted by numerous investigators
(see [14]) in the subsequent years because it is tractable to computer solu-
tions, This concept was used by Budiansky and llutchingon [15] in estimating
the critical load (suddenly applied) for imperfection sensitive systems.
Through this criterion, they related the dynamic critical load to the static
one. Finally, the concept was generalized in a subsequent paper by Budiansky
{16 ] in attempting to predict critical conditions for imperfection sensitive
structures under time dependent loads. Conceptually, one of the best efforts
in the area of dynamic buckling, under impulsive and suddenly applied loads,
is the work of Hsu and his collaburators [17-20]. 1In his studies, he defined
sufficiency conditions for stability and sufficiency conditions for instability,
thus %inding upper and lower bounds for the critical impulse or critical
sudden load. Independently, Simitses [21] in dealing with the dynamic buckling
of shallow arches and spherical caps termed the lower bound as a minimum possible
critical load (MPCL) and the upper bound as a minimum puaranteed critical load

(MGCL) .
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The purpose of the present work is to investigate the concept of
dynamic stability of structural elements subjected to step-loads and
develop the related criteria and estimates for finding critical conditions.
The step load consists of a suddenly applied load of constant magnitude
and finite duration to’ and the investigation will include the two ex-
treme cases of to* o and tod 0 (ideal impulse). Moreover, the effect of
various parameters (small damping and preloading) on the critical con-
ditions is studied. The developed solution methodology is demonstrated
through simple mechanical models of one-and two-degrees of freedom. Section
I deals with the introduction to the subject of dynamic stability of struc-
tural elements. Section II presents a detailed static buckling analysis of
the models. Section III presents the concept of dynamic stability for im-
pulsively loaded systems, which is demonstrated through the same models.
Section IV gives a detailed treatment of systems loaded suddenly with con-
stant load of infinite duration. Section V extends these concepts for the
case of suddenly applied loads of constant magnitude and finite duration.
Sections VI and VII deal with the study of the effects of preloading and

small damping on the dynamic critical conditions.




MO o - ey, w - ﬁ—.‘.
i. L

Lo i £ e

Ty
a

AN

T T T Ty
R .
s -~ . M

v—v

-
SR

- e T TR T T

SECTION II
GEOMETRY AND STATIC ANALYSIS OF THREE MECHANICAL MODELS
Model A. Geometrically Imperfect Model

Geometry of the Model

Consider the model shown on Fig. 2-1. This model consists of two rigid
bars of equal length, L, pinned together. The left bar is pinned on an im-
movable support, A, while the right end of the second bar is pinned on a
movable support, C, and loaded by a horizontal constant-directional force P.
A linear spring of stiffness k connects the bar common pin, B, to an im-
movable support, D, which is L units directly below support A. The initial

y

geometric imperfection, 60 is an angle between the horizontal line, joining

supports A and C, and bar AB (or BC). The deformed position is character-

ized by angle 6, as shown (in its positive direction).

Static Stability Analysis of the Model

The stability analysis of this model under quasi-static application of
the load P is performed by employing the energy approach. Through this

approach, equilibrium is characterized by

—cﬁ = ( (2°l)

where UT is the total potential, and the character of equilibrium (stable

or unstable) by the sign of the second derivative.

Fig. 2-1 Geometry and Sign Convention for Model A.
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Fig. 2-2 Load-Displacement Curves (Model A).

The total potential is:

U 2
U:-'—Iz=[,\/l+ain9-,Jl+sin9] -p(cos 8 - cos 8) (2.2)
kL [+} o]

where p = 2P/kL, and ﬁ: denotes the nondimensionalized total potential. The

superscript p implies "under load p".
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The static equilibrium points are characterized by

p = (Vi+sing - Jlraing) 2L ror 0 # 0 (2.3)
J/ 1481in0

Note that, for 60 = 0 equilibrium is characterized by

either 8=0

or p = cotd (Jissing - 1)/ /T#sine  (2.4)
Equilibrium positions are plotted on Fig. 2 as p versus 9-60 for various
values of the geometric imperfection eo. ‘The stability test reveals that
the dashed line positions are stable, while the solid line positions are
unstable and snapping (violent buckling) takes place through the existence of
a limit point. Also note that positions characterized by negative values
for 6190 (not shown herein) are stable and there is no possibility of buck-
l1ing. Therefore, our interest lies in the area of eo > 0 and 9-90 > 0.

It is assumed, for simplicity, that the bars are weightless and the mass m

of the system is concentrated on the joint 3,

Model B. lLoad Eccentricity Model

Model B, shown on Fig. 3, is representative of eccentrically loaded
structural systems, exhibiting limit point instability. The bar is rigid
and of length L; the spring is linear of stiffness k and the load eccentricity
is denoted by e. The static stability analysis for this model is presented in
Ref [23]. The bar is assumed to be weightless and the mass, m, of the system

is concentrated on the top of the rod, point &,
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Fig. (2.3) Ccometry and Sign Convention for Model B

The expression for the total potential is given by

U$ = %kazsinze - PL (1 - cos® 4 < sin 8)

In nondimensionalized form this expression becomes

Uy 2
U, == =g8gin"8 -~ 2p (| -~ cos 0 + & sin 0) 2.%)
r o1, 2
~ka
2
where p = Jﬂ‘é is the nondimensionalized load and e = E is the nondimen-
ka

sfonalfized eccentricity.
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Furthermore, equilibrium is characterized by

: . 8in0 (2.6)
‘ tan04+&

and critical load (sce Ref. [23)]) is given by

: - 2/34-3/2
! P = [1+e / ] 3/ (2.7)
cr
2.4 Model C. A Snap-Through Model
L‘ ' Consider the model shown on Fig. (2-4), which consists of three equal
t’ length rigid bars. The three bars are pinned to each other, snd they are

connected with rotational springs of stiffness P (linear). The left bar
L is pinned onto an immovable support, while the right bar is pinned onto a
movable support, which in turn is connected to a wall through a linear
extensional spring (horizontal) of stiffness k (linear). The middle bar

- is originally horizontal and the loading consists of two equal concentrated
! forces, P, applied at the ends of the middle bar and remaining vertical.

The original angle between the horizontal line, joining the supports and the

end bars is @. The angle between the horizontal and the left bar in a

deformed state is 9, while the angle betwecen the horizontal and the right

bar is P

Fig. (2.4) Geometry and Sign Convention for Model C
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This is a two-degree-of-freedom model, and as it will be seen, from
the ensuing discussion, certain new features center into the solution.

Assuming that o, 8, and ¢ are small angles such that their sine can
be well approximated by the angle itself and the cosine by one minus half
of the angle squared, then the expression f(or the total potential is

approximated bv

U-l; =“2'B [502+ 5‘92 - 2a2 - 80 - 200 - 2{)0’]

2 (2.8)
kL 2 2 2
2

+ (@ -0" -9 +cp0)2-l’l.(201~0-cp\

Note that for the above equation to be dimensonally correct the following
order of magnitude must apply to the various terms. 1f o, © and ¢ are
taken to be small numbers (of order &, then B must be of order 52x(kL2),
PL of order 63x (kLz\ and Ug of order BQQkLz).

The independent variables are ¢ and 0 and the symmetric response mode
is characterized by 0 = ¢.

New variables r and s, are introduced such that the symmetric response

is charascterized by s & 0.

These are

0 = JE (r-s)

(2.9
o = JE (r+8)
ar
r= (8 + W)/ZJE
(2.10)
s = (p - 9)/2xg

where 8 = S/kL2 is a nondimensionalized rotational! spring stiffness para-~

meter., Through introduction of additional nondimensionalized parameters

P
~ : L V) (2.1
8212 k2

1o
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and by letting

a = BA, (2.12)

the following expression for the total potential is ohtained.
- 1
U; = (r2 + 952 - 2JK r+ A+ 3 (h - r2- 352)2 - 2p ch - r) (2.13)

Note that, on the basis of the nondimensionalization, the order of
magnitude of the new parameters is as follows: (a) B is of order 52; (b)
UT is of order one; (c) r and s are of order one: (d) A is of order one; and
(e) p is'of order one.

It can easily be shown that, if 8 = 0 (no rotational springs), the
system is unstable for zero load, P = 0, and thus the 8 = 0 case is ex-
cluded from the present discussion, which also allows the nondimensionaliza-
tion given by Eqs. (2-12) and (2-13) (division by a nonzero number). In
the case B = 0. upon the application of a wery small load P, the system

snaps through an asymmetric mode (s # 0).

Static Analysis of the Model

The static analysis is performed by employing the energy approach.

For equilibrium

P
U,

—3—;-082(r-J1T)-(/\-r2-382)2r+2p (2.14)

g

—-&3-208188 = (A - (2°382) 6s 2.15)

By introducing a new load parameter

Q=r-. (2.16)

11
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the equilibrium equations, Fqs. (2-14) and (2-15) hecome

(A-1 - r2 - 332) r

n
=

s(h - 3 - 12 - 38y

]
o

(2.17)

There are two possible solutions to Eqs. (2.14)

(1) Symmetric response s = 0, an&
2
(AM-1-1)r=Q (2.18)

(11) Existence of asymmetric response, s # 0

A-3 =12 + 38

2r = Q (2.19)

The equilibrium positions, Eqs. (2-17) are plotted on Fig. 2-5 for

all Q, and on Fig. 2.6 as a load-deflection, Q-r curve.

On the basis of the results and by performing the stability test

(second derivatives), the following conclusions are drawn.

(a) For A <1 there is no possibility of buckling and asymmetric

response (s ¥ 0).

(b) For 1 < A £ 3 the response is symmetric (s = 0) and buckling

occurs through the limit point (pt. C on Fig. 2-6), positions between A and

C are stable, and the critical load is given by

Q. - o 5T

cr

b, =W +2 i (2.20)

12




(c) For 3 < A < &4 there is a possibility of asymetric modes, but
for this range of A-values, point B is to the left of point C (Fig. 2-6),

i.e.

\/A—;—l >V A -3 (2.21)

and bﬁckling still occurs through the limit point. Therefore, Pcr is given

by Eq. (2.20).

; D
4 . - A
: FF5%0)

rilsg’=a-3

Fig. 2-5 Locus of Static Equilibrium Positions (model C).
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(d) For A > 4 buckling occurs through the existence of unstable

bifurcation (Pt. B), positions A to B are stable, posit fons BCO and BO are

unstable, and the critical load is given by

Q. = 2fi-3 ., or (2-22)

pcr-JK+2./A-3

Fig. 2.6 Load-Displacement Curve for Model C.
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SECTION III

IDEAL IMPULSE

Statement of the Problem:

Given a structural configuration subjected to loads that fall under
the category of an ideal impulse, is there a possibility of dynamic in~
stability, and if yes, what is the level of the impulse for this occurrence?
Clearly, before one can estimate the critical condition, one must define
what is meant by dynamic instability. Some systems, regardless of the
magnitude of the impulse, will simply oscillate, linearly or nonlinearly,
about  the null positions. Others, if the impulse is small will oscillate,
but as the impulse increases they have a tendency to move away from the null
position. Finally, there is a group of systems, which behave a little
differently from the second group. For small impulses they simply oscillate,
but as the impulse increases a certain value is reached at which and beyond
which the system will oscillate but with a higher amplitude than that for
impulses smaller than this certain value. Regardless, though, of the par-
ticular ca‘'e one can always associate the magnitude of oscillation amplitude
to the value of the impulse. In such cases a critical impulse can be related
to a maximum amplitude (this is the case in deflection limited designs).

There is always a relati&n between the system behavior 'inder impulsive
10ads and the static equilibrium characteristics of the system. In the
groups discussed above, the first corresponds to systems which have unique
and stable load-deflection equilibrium states, or a stable post-buckling
bifurcational branch. The other two correspond to systems that exhibit

either limit point instability or an unstable bifurcational branch in the post-

buckling region. The emphasis, therefore, is placed on the last two groups

15
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and criterfa for stability and estimates of critical conditions are

presented through the models discussed in Section II.

MMe}A

Consider Model A shown on Fig. 2-1, assume that the bars are weight-
less and that the mass of the system is concentrated at point B. Further-
more, assume that the load, P, is suddenly applied with very short
duration time, To, and that the impulse (PTO), is imparted instan-
taneously into the system as initial kinetic cnergy.

Through impulse-momentum one obtains the following relation
8
,,L_!‘__“)
(PTo) 2 (sineo 3.1

where eo = de/dt at 9 = 00.

Since the system is conservative, then

ﬁg +71° = const. T (3.2)

e

where ﬁg denotes the total potential ''under zero load", T is the kinetic
energy, given by
T° --21-mL292 (3.3)
Note that Tg is the initial kinetic energy imparted instantaneously
by the impulsive load.

Finally the cxpression for ﬁ; is given hy

u‘; = [/l +sing - /1 + sin6°]2 (3.4)

16
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In order to understand the 'concept' of stability or instability under
an impulsive load for this owne degree of {reedom model, let us consider
Fig. 3.1, which is a plot of ﬁ; versus 0-90.

"According to Eq. (3.2), and since ™ is pusitive definite, motion

is possible if and only if

T, = UT =20 (3.5)

This implies that, for a given initial kinetic energy, Eq. (3.3), and

Ty

consequently a given impulse, say M D (see Fig. 3.1 - total potential

presented in nondimensionalized form), motion is confined in the region

® I< 0 - ep < @II- It is clearly seen then that, as long as Tg =D <

2 - J1 + sineo)z. the motion of the system is bounded and it contains
only the stable 'zero load" static equilibrium point, B. Such a motion
is termed "unbuckled'". For the motion to cease to ﬁe "unbuckled"”, i.e.
té become unbounded and cease to include only the initial stable static
equilibrium point, 3, D must be, at least, equal to the value of ﬁ; at
the unstable point C. Then that point (C) can be reached with zero
velocity and the motion can become unbounded. Clearly if D is even
slightly higher than the ﬁ; - value at point (i, the motion does become
unbounded and it can contain other static equilibrium points, such as
point C. Such a motion is called "buckled" and a critical condition

exists when the impulse 18 large enough to satisfy the relation

=0 _ 0
Ti - UT((‘.) (3.6)

Introducing nondimensionalized time and load parameters

17
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1/2
r = 1(2k/m) 0= @12 3.7)
p = 2r/kl
then
° 1 ‘2 (doy
o _ T _1l(m - (48
Ty = w2 2 (k) ® (d'r)eo (3.8)

From Eq. (3.1) one obtains

.2 46’
(pTo) - slneo (dT) (3.9)

Use of Eqs. (3.6), (3.4) (3.8) and (3.9) yields the expression for

the critical impulse or
(Pt = 2(2 - J1 + sineo] / sin o, (3.10)

Two observations are worth mentioning at this point: (a) Because
this is a one degree of freedom model, the critical impulse (pTo)cr given by
Eq. 3.1 represents both the minimum possible (MPCL) and minimum guaranteed
(MGCL) values as defined in Ref. 21. In other words Hsu's (17-18) "sufficient
condition for stability and instability'" boundaries are coincident; (b)
Although the concept presented so far is clear and it leads to a criterion
and estimate of the critical condition, it might be impractical when applied
to real structures. In the particular example shown so far, it is clear that,
according to the presented concept of dynamic instability, "buckled" motion

is possible if the system is allowed to reach the position & = /2. In many

cases such positions may be considered excessive, especially in deflection-

18
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limited designs. In such cases, il 8 cannot he larger than a specified
value, then the allowable impulse is smaller and its value can be found

from Eq. (3.6), if C is replaced by the maximum allowable value of 6, say

@L. ‘In this case

—_—
(T, =2[/1 + sin®, - 41 + sin eo]/sin e, (3.11)

Related with this discussion is the broad definition of stability
proposed by Hoff (22): '"A structure is in stable state, if admissible
finite disturbances of its initial state of static or dynamic equilibrium,
are followed by displacements whose magnitudes remain within allowable

bounds during the required lifetime of the structure."

Model B
Following the same notion as for Model A, the expression for the

critical impulse, (pfoﬁcr is given by

Il
(p'ro)cr e (3.12)

where
T -(—) t - ._'_,l‘— 3
= T v P e 2 (3. l )

and 1 is the bar moment of inertia about the hinge.

The expression for the total potential, the kinetic energy, and

impulse-momentum are given by (respectively)

U'l‘ = % ka2 sinze - PL(l - cos ® + £ sin 0) (3.14)
2
N de
re ol (dt) (3.15)
X L, de
®1) = () a (3.16)
20
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where 1 is the moment of inertia of the mass m about the hinge.

In this case also, if the design is deflection limited, @L, then

o .'/ﬂ l 2 [»] . l 2 2
UT \i) =3 ka  must be replaced by UT ®) = 7 ka‘sin @L and the allowable
impulse in this case is given by

o L

b (pTo)allowable e Sin®, (3.17)

¥ Another similar approach that may be used for finding critical impulses
is presented herein through Model B. It makes use of Eq. (3.2), but in-
stead of associating critical conditions with characteristics on the
"zero load" total potential, the critical condition is associated with

characteristics of the phase plane.

= Eq. (3.2) for this model, in nondimensionalized form becomee
2 2 [ e2
6 4+ gin“9 = L(pTJ'—‘ (3.18)

where 6 = dg/dr.

Clearly, if [(pTo )EL]2 <1, Eq. (3.18) denotes a closed curve about the
null position § = 6 = 0) in the phase planc. 1In this case the motion is
called "unbuckled". (See Fig. 3.2), When [pTo (%)] =1, Eq. (3.18) denotes

a curve which can escape the closed loop and thus the motion becomes "buckled".

Therefore,

: L

s PT ) =6 (3.19)
L"

L.

£

' Model C

’ In order to simplify matters, it is assumed that Lhe three bars are

F‘ weightless and that the impulse is imparted into the system through two

21
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Fig. 3. 2. Phase Plane Curves for Model B

4 masses, m, at points B and C. This is also used in determining rthe initial,

kinetic energy of the system. Thus

(p'ro) - (g—:) I oV (3.20)
]
5 and

10 - w2 (42
: i aclle = &
L
F' where T, is the small duration time.
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Introduction of the new nondimensionalized parameters

1/2

. ;&\ oo =2 .2
_— '(2m) and Fom o B, (3.21)

yields

= (4x)
(p1) = (W' R (3.22)

The coricept of dynamic stability is similar to the one used for Models A

and B.

o
i (3.23)

A critical condition exists, if the impulse, (pTo), imparts sufficient
kinetic energy into the system so it can reach, with zero velocity, an
unstable static equilibrium point on the "zero-load" total potential,

U:. and thus the motion can become unbounded.

Clearly, then from Eqs. (3.22) and (3.23)

T der = = 2 (i ) =J2_ﬁ$ (unst. st. pt.) (3.24)

Thus, before (pTO)cr can be found, one must have knowledge of all
stationary points and of their character (stable, unstahble, etc.). Starting
with the expression for ﬁ; [Eq. (2.11) with p = 0], requiring equilibrium,
and performing a stability analysis the following results are obtained.

Stationary poinis and their character

Pt. 1 at (/A Stable (Relative Minimum)
Pt. 2 at [(~/A *-JR-A)IZ 0] Unstable (Relative Maximum)
Pt. 3 at [b¢ﬁ'— A-6)/2,0] Stable (Relative Minimum)
Pt. 4 at [~ A 2 ./A - 4/2v Unstable (Saddle Point)

Pt. 5 at (J/Vz Y s Unstable (Saddle Point)

23
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We observe that there are two possibilities of the motion becoming un-
b bounded; (a) by reaching Pt. 2 with zero velocity, in which case the system
S

b( will definitely move toward Pt. 3 (far stable point);in this case the corre-

sponding critical impulse is termed (MGCL) because fl; (Pt. 2) 18 the largest

- of all I-J; (Stationary pts). Thus, regardless of the path of motion in the r,
P s space, starting from (/A,0), the motion will enclose at least one unstable
3 point and will become unbounded; (b) by reaching either Pt. 4 or Pt. 5, in

which case there is a single possibility of the motion becoming unbounded and
:‘ enclosing one unstable point; note that, in this case, there 18 a possibility
of unbounded motion, but this is not guaranteed, because the system can simply

oscillate in the r, s, space bounded by lines of equal potential, to l-l,?. (Pt. &)

enclosing only the near static stable point, Pt. 1, and either of the '"saddle"
% points, Pt. 4 or Pt. 5; thus, the corresponding critical impulse is called
E (MPCL).
:‘ (MPCL) and (MGCL) denote upper and lower bounds of (p-ro)cr.
4

By Eq. (3.24),

h (MPCL) (), = Wh -1 (3.25)

- oa 2. 1 2 2.1/2
(MGCL) (7)), = [5A-2 3A°-6A + 5 (M2 - 407

L.. Note that critical conditions can exist only for A =2 4, If A 2 4, there
|

} is no far stable static equil. pt. on the "zero-load" total potential,.
b

o The results are plotted on Fig, 3.3.

g

f

.

4
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Fig. 3. 3

Upper and Lower Bounds for the Critical ldeal Impulse (Model C).

25




e T LY. PR et At A 0 X 0w s " o _,H.ﬁﬁ—v—————.v—ﬁw—ﬁwﬁ

TTy——

B
Y]

SECTION 1V

CONSTANT LOAD OF INFINITE DURATION

_The concept of stability, for this type of loads is also based on the

definition of "buckled" and "unbuckled" motion as for the ideal impulse
Moreover, the criterion for stability and the related procedure for estimat-
ing critical conditions will be presented through the same three models.
Model A

For this case, the sum of the total potential and kinetic energy is zero

u. +T =0 (4.1)

Fig. 4. 1 shows plots of ﬁg

p. It is seen from this figure that for p < 0.432 motion is confined between

versus e-eo for various values of the applied load,

the origin and 6-60 = A, or the motion is "unbuckled'. A critical condition

exists when the motion can become unbounded by including positfon A" (buckled

™ CONEEEI

motion). Thus, the critical load is found by solving the following equations

:F ﬁg-Oandp-L«/l+sin6 -J1 +smeo]—%_t}_-_ 4.2)
’ Vq.+ 8in 6
3
E with

-P
‘ dzUT

= <0

. de

The inequality condition ensures that U: = 0 at an unstable equilibrium
point. The simultaneous solution of Eqs. (4.2) yields the dynamic critical
load and the corresponding position of the unstable static point, A" on Fig.

s 4.1,
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The results, for this model, are presented graphically on Fig. 4.2,

For this load case, also (MPCL) and (MGCL) are one and the same level.

Model B
For this model, the critical condition is estimated through the simul-

t aneous solution of the following equations

Pp_1 2 .2 e -
UT ika sin” 6 - PL(1 cos 0 +-L gin 6 0
ka2 sin® cos ® - PL (sin© +% cos 0) =0 4.3)
2P
and > < 0 (at the soluttion)
de

The results are presented graphically on Fig. 4.3 as P, Versus e/L.
For this model, critical conditions are also related to characteristics of
the phase plane curves. Fig. 4.4 shows plots of 6'!' versus 6 for various
values of p, as well as 8 versus © (phase plane).

The energy balance equation, in nondimensionalized form is

52 + sin29 = p (1 - cosh + 12 sing) = 0 4.4)

Clearly from Fig. 4.4. if p < Per o the motion is "unbuckled", which

implies that for these loads the system simply oscillates about the static

stable equilibrium position (A1 or AZ)' The load p {8 critical, (pcr ) if

@

the motion can escape through point 83 ('buckled motion").

3 Note that for single degree of freedom models Pcr corresponds to both

] [- ]
E the lower and upper bounds (MPCL & MGCL).
E Model C
3

The concept of dynamic stahbility is similar to the one used for one-

& 27
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; degree-of -freedom models. The only difference is that, in this case, there
* is a lower bound (MPCL) and an upper bound (MGCL). The lower bound corre-
;‘1 sponds to loads for which there is a possibility of '"buckled" motion, while
1 the upper bound corresponds to loads for which the motion will definitely

E be “buckled". Because the existence of bounds is dependent upon the value
F of A, the discussion will be based on the range of A values.

.60

" .soT—
.40}

L“‘ .30}-

1

ul

Fig. 4.1, Total Potential versus Displacement for Various Loads (Model A).
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Static and Dynamic Critical Loads (Model A).
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Fig. 4.3. Static and Dynamic Critical Loads (Model B).
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(a) For A < 3 there are no saddle points and the system behaves as a one-

degree-of-freedom system. Therefore, for this case the governing equations

are
ﬁ: =0 ; (A-l'rz) r =Q;
and dzﬁg
3 < 0 at the solution 4.5)
dr

Note that, for this case, '"buckied" motion is both possible and guar-
anteed. Thus the upper and lower bounds are coincident.
(b) For A > 3, there exist '"saddle" points on the total potential, {n addi-
tion to the relative maximum point. All three are unstable static equilibrium
points (stationary points). Therefore, the mction can become "buckled'" either
through a saddle point or through the relative maximum point. It will next
be shown that, in certain instances, '"buckled" motion is possible and in others
guaranteed. Before proceeding with the analysis the following observations
are made:

Parenthesis 1: For a specified load the total potential has a lower value

at a "saddle" point than at a relative maximum point. This can be proven

through computation of ﬁ: at the corresponding points.

Parenthesis 2: Regardless of the value of p and A (for A > 3), the total

potential at any s position, but a fixed r-position (r = r <,JK—:-5) has a
higher potential than that of a position characterized by r = r and an s-

position on the ellipse
r2 4382 = p -3 (4.6)

Note that the ellipse, Eq. 4.6, defines the locus of static equilibrium

points ("saddle" points).
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Proof: Let Aﬁs denote the difference in total potential, between the any

s-position and that of an s-position on the ellipse (r = ;). Then, from

Eqs. (2.11 and 4.6)

-P -2 2 - 1 2 2,2 -
AUT = (" +98° -2/Ar +A +3 (A -r1" =387 - 2p(/A - )]

-[4A - % - 262 - 2Kt - 2pWA - D))

9

=3 (22 + 352 -A)+5+%(A-;2 - 3822

- 2
=';‘(A-3-r2-392)20 Q. E. D. (4.7)

Clearly, the difference is zero when s is on the ellipse and positive for
all other s.

Pa;enthesis 3: For p 2 JK.+ ZJQT:S[loads higher than the static critical
load - see Eq. (2.20)], if r,<r, s JA = 3, then the total potential on the

ellipse, Eq. (4.6), is higher at r, than at -

2

Proof:

-P
=

Lec Ay = Gp(r,) - 0%¢r)) (4.8)

Then, by Eqs. (2.11) and (4.8)
- P - - .
U, = 2(ry-r)) [p - VA - (r) + 1)) (4.9)

Since Ty - r1 is posirive AﬁE is positive if p > vﬁr+-(;2 + ;l).
But p 2 ,//T + 2./1—\.—'—.3. thus

if A+2/h-3>/A+ (ry + 1) then
definitely p > /A + (ry +r1)).

Clearly, from the statement of the parenthesis 2/h - 3 > r, + T which

33
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concludes the proof.

As the load is increased from zero, at low values of p, the zero
potential lines in the rs-space enclose only the near static equilibrium
point and the motion is "unbuckled". At some value of the load the first
unstable point(s), at which the total potential can become zero, is (are)
the "saddle" point(s) according to Parenthesis 1. At this load there is
a possibility of "buckled" motion through the saddle point. This load,
then, is called MPCL. The governing equations for finding this critical
load, as well as the corresponding position (sr coordinates) of the saddle

point are:

G0 = (cf +98% - 2/fe +0) + 2 (A - 1% - 3B - 2p( K -r) = 0

(A-l-r2-3s2)r-p-JK'

A-3- r2 - 332 =0 (46.10)

Note that "saddle" points are unstable, thus, thcre is no need for applying
the stability requirements,

The solution to Eqs. (4.6) yields

(MPCL): P = AW -1

s

and ''saddle" point at r =,/ - ;2": s =+ (A - 41) E 4.11)
The solutions to Eqs. (4.5) and (4.10) are plotted on Fig. (4.5).

‘As far as the case of the upper bound is concerned (MGCL), there are
two ways through which a guaranteed '"buckled" motion can be achieved. One

way is to require ﬁ: at the relative maximum unstable static point to be zero.
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In this case the motion is definitely buckled and the critical load can
be obtained from the solution of Eqs. (4.5). The second way is for loads
which are equal to static critical load for asymmetric buckling (/A + /A-3).
In this case, although the total potential at the relative maximum point is
higher than zero, guaranteed "buckled" motion can bhe achieved because of
Parentheses 2 and 3. 1In this latter case, Pcr (MCCL) is given by the expres-
sion for the static load. Both results are shown graphically on Fig. 4.5.
Note, that the upper bound is the smallest load computed, either by
the solutions of Eqs. (4.5) (for é% < A £7.3), or by the static critical
load (for A = 7.3).

Moreover, for very large A-values the upper and lower

bounds approach each other (3453.
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Fig. 4.5.

Upper and Lower Bounds for the Critical Load (Infinite Duration).
(Model C).

36




[idiars $9-+ LA

YT

DPRCAC e, g9~ S

il e s P

‘e

i

SECTION V

CONSTANT LOAD OF FINITE DURATION

Statement of the Prohlem

Consider a model at its natural (unloaded) position, At time t =0
a constant load P is.applied suddenly on the system and it acts only for a
finite duration time t= To. After the release of the force P, the system
moves because of the imparted energy during the action of the load Po. The
concept of dynamic stability for this particular load case is similar to
the concept used in the cases of "ideal impulse" (Section III) and of "con-
stant load of infinite duration' (Section IV). Thus, for all three cases the
concept of dynamic stability is based on the definition of "buckled" and
"unbuckled" motion.

If the energy imparted into the system, through the load P, is
insufficient for the system to reach the unstable static equilibrium point
on the "zero load" total potential, with zero velocity (zero kinetic energy)
the motion is called "unbuckled". In this case, the system is dynamically
stable. Consequently, the criterion for dynamic stability requires that
the dynamically stable system possess total energy (at the release time, To)
at a level below the level of the potential at its unstable static equilibrium
point for the '"zero-load" system. This is fully substantiated by mathematical
arguments in the next section, On each individual model, the criterion is
invoked and estimates for critical conditions are found. The extreme cases
of To -~ (constant load of infinite duration) and To = 0 (ideal impulse) are

special cases of the present one.

GCeneral Procedure

Since the system is conservative during the action of the load, then
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U + T =0 for 0O t=arT (5.1)

where To is the time of release of the load P. Similarly,

o o _ .o o .
Up + T = Uy (To) +T (To) for t T, (5.2)

The continuity of the kinetic energy at the time of release, To’ is expressed

. by o P
3 T (To) =T (To) (5.3)

- Use of Eqs. (5.1) and (5.3) into Eq. (5.2) yiclds

v

o o _ .0 JETL 2P .
Up + T =U; (To) Uy (lo) for t T, (5.4)

(il eag

If L)-indicates the position of the unstable static equilibrium point for
P = 0, the critical condition is met (buckled motion is possible), if the

load P, acting for time To’ imparts sufficient cnergy into the system to

T r TeT oy

equal the potential Ug (L:) of the "zero-load" system at the unstable position

°
L, Thus, the stability criterion is expressed by

F! o P [o) o
. UT (To) - UT (To) < UT (Lu) (5.5)

The equality sign implies a critical condition, wh’le the inequality refers to

{ a dynamically stable situation,
; Note that Eq. (5.5) relates the applied load P and the release position,
. LP (one equation in two unknown quantities, if one vicws the release position
é Lp at time To’ as one quantity). 1In addition, through equation (5.1), one may
i' relate tﬁe applied load, P, the release position, Lp, and the release time, To’
E. for a specified path of motion. For one-degree-of-freedom systems there is
{ only one path, but for two-degrec-of-frecdom systems there are several paths;
‘ 38
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for such cases, the path is determined through the brachistochrone problem
of the system. This is so, because one may view the problem as follows:
Find the smallest time To for a given load P such that the motion can become
"buckled".

A critical condition is obtained by spccifying the load and finding,

» through the simultaneous solution of the above two mentioned equations, the

f: corresponding release time, To .

’ cr

“ These steps are next clearly demonstrated for each one of the three models.
Model A

For this particular model, the unstable stationary points on the "zero-load"
4 total potential are located at © = + /2 [sce Eq. (2.2)]. Then, Eq. (5.5),

with the equality sign), becomes

p (cos 0o - cos ecr) = /2 -~/l+sin80]2 (5.6)

-

i At s 4

where 9 is the release position, L _, of the system. Note that © = O(T ).
cr P cr Oc¢r

This equation, Eq. (5.6), is onc of the two nceded equations for finding a

critical condition. Before finding the second equation, from Eq. (5.1), the
following simplifications are introduced.

First, it is assumed that the bars of the system are weightless and the
mass, m, of the system is concentrated at joint B (see Fig. 2.1). With this,

the kinetic energy of the system is given by

1 2.d0 .2
T =5l (§7) (5.7)

Next, the following nondimensionalized time parameter, T, is introduced.

2kys
T t(ln) (5.8)
Finally, the kinetic cnergy, T, is nondimensionalized in a manner similar
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to the total potential

T = t/kLl (5.9)
Then Eq. (5.1) becomes
-5 =p -p  ,d0°
Up + T =Up + (;T- =0 (5.10)

The critical condition is obtained from Eqs. (5.6) and (5.10). The approach

one may use is as follows: first specify the value of p (these values must

be larger than the critical load corresponding to the infinite duration case)

and through Eq. (5.6) solve for ecr; then use Eq. (5.10) to find the correspond-

ing duration time To, or

ecr 9
T, =g ’-s-u‘T’ (5.11)

cr o

where ﬁg is given by Eq. (2.2).

Note that computationally it is much simpler to assign values of ecr
(starting with Bo + 91, where 91 is a small increment and increase it to values
approaching the angle corresponding to the infinite duration case) and solve
for p and Tocr from Eqs. (5.6) and (5.11) respectively.

A computer program is written and data are obtained through the Georgia
Tech high speed digital computer CYBER 70, Model 74-28., These data are present-
ed gréphically on Figs., 5.1 and 5,2, Fig. 5.1 shows critical condition, for
various imperfection angles, 90, in terms of p and T°ct' Note that as the
critical release time, T°cr’ is increased, the corresponding load approaches

the value of Per for the infinite duration casc. The same data are presented

on Fig. 5.2 as plots of (p'rO)cr versus T Through this figure, it is

Ocr

shown that as T, " © the values of (mo)cr approach the critical impulse values,
cr
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as obtained in Section II1I.

Model B
For this particular model the umnstable stationary points on the *zero-load"
total potential are also located at 8 = + ©/2 [see Eq. (2.5)]. Then, Eq. (5.5)

becomes

2p(l - cos OCr + e sin 0cr) =1 (5.12)

where e = e/L, p = PL/ka2 and ocr is the position of the system at the critical

time of release, T .
°cr

According to the nondimensionalization cmployed for this model in Section

III, the kinetic energy and time paramcters are

- . 1
T = 02 , T = (ka2/I)2t (5.13)

where

.

€ = do0/dr.

For this model then, Eq. (5.1) becomes

up + 02 - ¢ (5.14)
From Eq. (5.14) onc may solve for the crital duration time, To _» OF
cr
Ocr A0
To =f */-r,ii (5.15)
cr
0 T

where the expression for ﬁg is given by Eq. (2.5). For this model as well as
for model A, a computer program is written and data are gencrated for finding
critical conditions (p and corresponding TOCr). Computationally, values of
ecr are assigned and the value of p is found from Eq. (5.12). Then, the
critical release time Tocr is cvaluated from Eq. (5.15). The generated data

are presented graphically on Figs, 5.3 and 5.4. Note that, as the duration
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time becomes large, the corresponding load approaches the critical value
for the case of constant load of infinite duration, Pcrm(see Fig. 5.3).

Similarly, as the duration time approaches zero the corresponding (prc)cr
approaches the value of the critical impulsc (see Fig. 5.4). This value

is equal to 1/€ and it can also be derived analytically from Eqs. (5.12)

and (5.15). If the expression for E,‘;, is used in Eq. (5.15), one obtaiuns
6 do
S rcr —
®r "o JL-cosO+esin® 61n28 (5.16)

1 -~cos8 4+ & sind
cr cr

Next it is observed that as the critical duration (release) time
becomes very small the corresponding release position, O.,, also becomes
very small, for every fixed value of €. Then, for very smalll 0., values;

and éonsequently ®-values, Eq. (5.16) can be written as

®cr 0 % Ocr 9 340
r cr
Ocr o Ocr cr 'r° Ocr” O¢r

)

0 % cr

= zecr (E) 0 = zecr (5.17)

Similarly, from Eq. (5.12
p= L (5.18)
2§°ct )
Thus,
(PT ) e = 1/8

Model C

The expression for the '"zero load" total potential is given by

G: = (r2+ 98 - 2K+ h)+ } (h=g2-35%)2 (5.19)

Starting with ﬁ; » requiring equilibrium and performing a static stability
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analysis the following stationary points arc obtained (sce Section III).
Pt. 1 at (/A,0) Stable(Relative min)
Pt. 2 at[(/— - JJA=4 )/2,6] Unstable (Relative max)

Pt. 3 at[ﬁ/ﬁ + JA-4 )/2,0] Stable (Relative min)

MM IR

Y

L~ o

Pt. 4 at EVK]Z, JA-4/2] Unstable (Saddle point)

Pt. 5 at {ﬂJK]Z, "VA-A/ZJ Unstable (Saddle point)

For simplicity, it 1is assumed that the three bars are weightless and
the only massive parts of the system are two masses, m, concentrated at

the joints B and C. Moreover, the nondimensionalized kinetic energy is

MR SR RN SR ™ SR

expressed by T= :g 3 where T characterizes the kinetic energy and
8“kL
2. 2
____1 11:)2 (Slf_\n ‘_-!__ ,2(dr>
T (8 (8 - g e N $(5.20

wvhere

(’)=% and T = ¢ (32—1:;)2

i 7 AN

Clearly, saddle points exist for A > 4. For this range of A-values, the
"zero load" total potential value at the saddle points, pts. & & 5, is

smaller than the corresponding value at the rclative maximum, pt, 2. On

e £ 0 ainLE A

the basis of this observation the motion can possibly become '"buckled"

3 through the ''saddle" points, pts. 4 & 5. The corresponding condition for
this case is a'possible critical condition'. On the other hand if the
imparted energy, by the applied force at the release time, is sufficient to
reach the relative maximum (unstable) static equilibriuﬁ point, pt. 2,
"buckled" motion is guarantced and the corrcsponding critical condition is
a guaranteed one. The former is termed sufficient condition for dynamic

stability, while the latter sufficient condition for dynamic instability by

hed

Hsu (17].
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Next, the computational procedure for finding the possible critical
condition is outlined.

Through Eq.(S.S)(in & nondimensionalized form) one obtains

% WA-m) = 2 -y (5.21)
T=T

where T is the release time.

Moreover, Eq. (5.1) in nondimensionalized form holds for (0 < 7 5.10),

For a given path of motion, integration of Eq. (5.1), yields a relation
between the time of release and the position at that instant. Note, that
the problem has been cast in the following terms: for a given load, p,

find the smallest release time, T°cr’ such that the system may reach an
unstable point (saddle point for the minimum possible critical condition)
with zero velocity, Eq. (5.24). Since one is interested in obtaining the
smallest release time, Tocr’ and since the position at the time of release
is path dependent, one can solve the problem by considering the associated
brachistochrone problem. The brachistochrone problem makes use of Eq. (5.1)
for this system, and through its solution one obtains the relation between
the smallest release time, T°cr' the position at the instant of release, as
well as the path that yields T°cr' The details of the solution to this
brachistochrone problem are presented in Appendix A. The solution to the
brachistochrone problem yields that the path is characterized by szo and the
relation between Tocr and the position of the system, Teps a6 7T is

Ocr
dr

T
T = cr
°er I Vs (h-r)-2(x /M) 2- (A1) 2

Computationally, it is simpler for one to assign values of LI (starting with

(5.22)

values close to the initial position, r = Jﬁ and 8 = 0) solve for B through
Eq. (5.21) and then for T°cr through Eq. (5.22).
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Note that for the case of the minimum guaranteed critical condition

Eq. (5.21) is replaced by a comparable equation which employs the value of
the 'tero load" total potential at the relative maximum unstable static point.

.Numerical results are presented graphically on Figs. 5.5 and 5.6, for the
minimum possible critical condition only, and various values of A. The curves
of Fig. 5.5 depict critical conditions in terms of applied load, p, versus
critical release time, T°cr' One may observe that as the T°cr increases, the
corresponding load approaches, asymptotically, the value of Bcr for the infintite
duration time. Fig. 5.6 presents the same results as Fig. 5.5 but in terms
of (pry).r versus critical release time Tocr* Note that as Toct approaches

zero, the value of (pr,)., approaches that of the critical ideal impulse.
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SECTION VI

THE INFLUENCE OF PRELOADING-CONSTANT LOAD OF FINITE DURATION

Statement of the Problem

P
Consider a model at its stable equilibrium position lso , when

subjected to an initial static load Po. At time t = 0 an additional
constant load P is suddenly applied to the system and acts only for finite
duration time t = To. After the release of the force P, the system moves
because of the acquired total energy during the action of the load P.

The system will be called dynamically stable if its motion is "unbuckled",
in the sense described in previous sections. Since the systems under
consideration exhibit either limit or unstable bifurcation point insta-
bility, the system is stable if the energy, imparted through the action of
the load P, is insufficient for the system to reach the unstable static
equilibrium point for "Po-load" total potential of the system with zero
velocity (zero kinetic energy). For cach individual model, the criterion
is invoked and estimates for critical conditions are found. The extreme
cases of Td* ® (constant load of infinite duration) and Td* 0 (Ideal Im-

pulse) are treated as special cases.

General Procedure

The concept of Dynamic Stability and the general procedure as well are
extensions of those used in the cases of the constant load of finite
duration. The equilibrium positions of:the preloaded system are given

as solutions to

=0 (6.1)
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where L is the position of the system. Thus, one may find all the "Po-

load" static equilibrium positions including the ncar stable position

P p
Lso as well as the unstable position Luo, through which "buckled" motion

can be recalized (scc Fig. 6.1).

Keeping the same generalized coordinates for all models and the
same expressions for the total potential and for the kinetic energy, one
may apply the concepts already developed. These are next explained through
the use of Fig. 6.1, which holds for onc-degree-of-freedom systems, but
the e;planation is applicable to all finite-degree-of-freedom systems.

The system is initially loaded quasi-statically by load P, and it
P

reaches point A (L = Lso; stable static equilibrium point). Then, a load

p is applied suddenly for a time To (finite duration). At T, the load p
is removed.

-*o _
UT at Tt =0 or

A potential ﬁ: is defined, such that ﬁi
P

L= LS° (see Fig. 6.1).

p PP [P Po\ PP P

= +_ -

Up = Up L.UT (Ls. Uy (I‘s 3 (6.2)

Since the system is conservative, then during the action of p one may

write

P +P P p

U, +T° =ﬁT°(L°>;Os'r' T

S (6.3)

o

P +P
wvhere T ® is the kinetic encergy of the system. This equation, Eq. (6.3),

is equivalent to Eq. (5.1) of Section V. Making use of Eq. (6.2), Eq. (6.3)
becomes

_PtP P 4P P 4P
Up +T = U, (Ls ) 3 0 1 < L (6.4)
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For times greater than To the system is also conservative and conser-
vation of energy ylelds

p r p

= = © - o .
+T = UT (To) +T (To) ;T > T (6.5)

o

where the right-hand-side represents the level of the system energy at the
release time To? and Eq. (6.5) is cquivalent to Eq. (5.2) of Section v,

If the forée p has imparted sufficient energy into the system, such
that it can reach the unstable point B (L = Lio; see Fig. 6.1) on the
"po-load" potential with zero kinetic energy (velocity), then "buckled"
motion is possible, and the system becomes dynamically unstable.

The governing equations for predicting critical conditions are obtained
from Eqs. (6.4) and (6.5).

By requiring kinematic continuity at 1 = T, one may write

_P P P
T (To) =T (To) . (6.6)

From Eq. (6.4) one may write

P +P P +P P . P +pP
=" 0 ( o = 0

AL N
T = Uy Lo - U, ) 6.7)

Subgtitution of Eqs. (6.6) and (6.7) into Eq. (6.5) yields

. _ o = 0
('o) u (To) + UT LS

T

PP P 4P P +B, P
- ( (6.8)

for 1 > 1
o

Next, a critical condition exists, if the system can rcach point B (sce

_P P\
Fig. 6.1) with zero kinetic energy [T ° (Luo) = 0}. Thus, denoting the

critical condition by p, T, » Onc may write

cY
P ,P. P . P+4D . _P+P, P
w0 o\ _ &2 O p - O ~ 0 (o)
Up (ku ;= Up (To )= Up (To )+ Ug (Ls ) (6.9)
(3 o cr
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‘ Note that Eq. (6.9) relates p, To and the position of the system,
f Lcr' at the instant of the release of i;c force p. Please observe (as
Ex also explained in Section V) that the above described critical condition

depends on the evaluation of two parameters, p and Tor One approach is

to prescribe "o and find the corresponding Py and the other is to pre-

scribe p and find the corresponding To ° The two are equivalent. Re-

cr

gardless of the approach, Eq. (6.9) rclates three parameters p, T (or
cr

P To) and Lcr (the position of the systcem taken as one parameter).

The second (needed) equation is obtained from Eq. (6.4). This equa-
tion (see Section V) is uééd to relate the load p, the time of release,
To, and the position of the system a* the instant of release. In order
to find, for a prescribed load, the position of the system at the instant
of release, one must specify the path of motion. For one-degree-of-freedom

systems there is only one path and this is casily accomplished [see Eqs.

(5.13) and (5.17)]. On the other hand, for a multi-degree-of-freedom
system there are numerous possible paths leading to a multitude of posi-
tions for a given release time. 1In such cascs, if one is interested in

finding a lower bound for the critical conditions, he may find the path

that yields the smallest possible time. Thic may be accomplished by

solving the corresponding '"brachistochrone" problem (see Appendix A). The

< solution to the "brachistochrone'" problem yields the path of motion which
! yiclds the smallest possible time. Thus, Eq. (6.4) along with the path
3
- of motion, relates the release time To and system position at the instant
9
]
\ of release [sece Eq. (5.24)]. Thesec steps are clearly demonstrated for
each of the thrce models, in the subsequent articles.
. Moreover, if one is dealing with a dcflection limited design (the
‘e
.
1 .
3 '56
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position of the system cannot exceed LL” - see Fig. 6.1), then ﬁio(lpo)

is replaced by ﬁ:o(L{o), in the outlined computational procedure.
Parenthesis: The cases of idcal impulsc and suddenly applied load of
constant magnitude and infinite duration, may be obtained as special cases

~f the present procedure,

However, critical conditions for these two load cases may also be ob-
tained independently.

For the ideal impulse case, one may rclate the impulse to an initial
kinetic energy, and from conscrvation of cncrgy

-Po , -Po _ -Po ,,Po. =Po
i+ T 0,.° @ + T (6.10)

Then izo is critical (related to the critical ideal impulse) if the

system reaches position Lﬁo (pt B of Fig. 6.1) with zero kinetic energy.

Thus

=Po _ ﬁPo

T are

_ rPo Po
i p (g ) U, Uﬁ ) (6.11)
cr

For the second cxtreme casce (10"“), Pcr may be obtained from Eq. (6.3)
or (6.4), which, for this nasc, holds true for all T (0 < T * ®), Thus, P

corresponds to the solution of

PHP P 4P P 4T
i, @ ) =1 (L_0) (6.12)

P _+p
where L : denotes the unstable static equilibrium position of the

system when the static load is equal to P, + p.
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Model A

For this particular modcl, the static stability analysis is presented
in Section V. The geometry of the model is given in Fig. 2.1 and the static
response in Fig. 2.2.

In evaluating the effect of preloading three imperfection angles are
chosen (q)= 0.005, 0,010, 0.020), and for cach 90 - value the system is
initially loaded quasistatically with a p0~load smaller than the pcr-static.
Then, the system is loaded dynamically. The following values are used in

the dynamic analysis:

6 = 0.005 H p__ = 0.440 : p_ = 0.340, 0.380, and 0.420
o cr o

90 = 0.010 ; Per = 0.415 H P, = 0.300, 0,360, and 0.400

6 =0.020 H P, = 0.384 H P, = 0.300, 0.340, and 0.370

First, the extreme cases (T0 - o0 and To - ®) are analyzed, by employing
Eqs (6.11) and (6.12) respectively.

The ideal impulse, (pTo) is related to the initial kinetic energy

[in the nondimensionalized form; see Eqs. (3.8) and (3.9)) by the expression

(pr ) =

=P 72
—_—- |T, 0 (6.13)
o sin(eso) [ t ]

P
where 9.0 is the stable static position (angle 8) under P, load.

The critical ideal impulse (pro)cr, is obtained by substituting Eq.

(6.11) into Eq. (6.13), or

1
o - Pa2
(pTo)cr = ::j%r;> [U:O(ef?) ) U:O(O;j]z (6.14)
s
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where eu° is the unstable static position under P, load, and the expression
for the total potential is given by Eq. (2.2) by using Py wherever p appears
in the equation. The numerical results for all eo, P, combinations are

presented in tabular form on Table 6.1.

Table 6,1 Critical Ideal Impulse, (pro)ct, Model A.

8 = 0,005 @ = 0,010 e = 0,020
[ [o] [o]

P, P ) P, °7 e P, (P7 ) e

0 162.000 0 81.000 0 40,000
0.340 8.246 0.300 6.980 0.300 2.900
0.380 3.498 0.360 2.247 0.340 1.207
0.420 0.758 0.400 0.486 0.370 0.338
0.440 0 0.416 0 0.384 0

Note that the first row results are obtained trowm Fq. (3.10) of
Seétion III: Note also that as the value ol Py approaches the value of
the static critical load the additionally imposed (critical) {mpulse tends
to zero. This is reflected by the results ot the last row (Table 6.1),

The critical load for the case ot T, ™ P , is obtained the
oQ

following steps, for a given eu, P, combination (a) solve Eq. (2.3) given

P
below, for eso (stahle posftion)

-

p, =T+ sine -./1+ sinT;} cot 8/ ./Y + sin O (6.15)

(b) Static cquilibrium positions arc characterized by Eq. (2.3) for

loading P, + p, or

P+ Po = [;ﬂ + 8in 0 - /1 4 sin OOJ cot 6/./T—+ sin O (6.16)
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(¢) Eq. (6.12) for this model is given below.

_ 12
3: [Jl + sin 0 - /1 + sin OOJ = (P *tp) (cos 0 - cos 0) =

. o

S 14+ sin® - Jl + sin 0 -p <cos 0 - cos O ) 6.17)
s o o o s

. b+

The simultancous solution of Eqs. (6.16) and (6.17) yields ® ° and

P, -+ Note that since Eq. (6.17) must be satisfied at an unstable point

. «©
h. (eﬁd+p) the stability test may be used to ensure this, or
2 2 Po+

_ P
- du
i g bp

. PotP
Ei a6 0,

The numerical results for all 00, po combinations are presented in

tabular form or Table 6.2,

Table 6.2 - Critical Dynamic Load, P,

;g ®

(Constant Load of Infinite Duration: Model A)
z;‘ = 0.0005 ~§_= U0.010 ¥ =0.020
po pcrm p°+ pc r, po pc rm pp+ pcrm po pc rw po+ pc r,
0 0.4320 | 0.4320 0 0.4010 (| 0.4010 0 0.3690 0.3690
0.340 | 0.0940 { 0.4340] 0.300 0.1090 | 0,4090 | 0.300 0.0751 0.3751
1 0,380 | 0.0560 | 0.4360] 0.360 0.0517 | 0.4117 ] 0,340 0.0396 0.3796
l 0.420 | 0,0165 | 0.4365} 0.400 0.0136 | 0.4136{ 0.370 0.0116 0.3816
r;, ! 0.440 0 0.44001] 0.4160 0 0.4160| 0.384 0 0.3840
.‘ ,
' Note that the first row results of Table 6.2 are taken from Section Iv.
The results of the last row reflect the fact that if the system is loaded
¢ quasistatically up to the limit point, then the additional suddenly applied
60
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load that the system can withstand tends to zero.

Finally, for the case of constant load, p, applied suddenly for a

finite duration, To’ critical conditions are obtained from the following
stepé:

p P
(a) From the static stability analysis obtain 0 ® and eu° for each
S

(b) Use of Eq. (6.9) ylelds

Po

e e ——————— —-——_——2
|4 (cos @ - cos® ) = [Jl + sin 0p°-‘J1 + sin 6 ]
s Cr. u [o)

2
- t/1 + sin Opo-‘/i + sin 0 1
s o.

p P
+ po (cos 0“0 - cos OSO) (6.18)

where ecr is the position 0 at the instant of the relcase of the force p

(t = To). ,

.In Eq. (6.18for a given, Py everything is known (po, 00, eso’ and
P
eu°) except p and Ocr' Therefore, Eq. (6.18) rclates p and Ocr for a critical

condition to exist.
_ptp

2
(c) Since T s (%%) , then {rom Eq.(6.4)we may write

PP P PP
8 - -
L.y, (6 )-T. @) or

dr T “s/ T
PP o PP %
- o —
dr = [uT (s.9)- 1, (0)] w0 (6.19)

Integration fromt = o to 1 = To and use of the expression for the total

potential [see Eq.(2.2)] yields
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v ) v 12
g T = °'{[a./1+ sin © -1 + sin © '-[\/u sin 0 -/1+sine]
[o] P S 0.] o
o
0
8

2

P -%
+ (pd+ p)(cos Bso - cos 9)} doé (6.20)

Note that Eq. (6.20) also relates Gcr to p.

A critical condition is characterized by (p, To) that satifies both
equation, Eq. (6.18)and (6.20). This means that for a given release time,
To, find pcr or for a given p find Tocr. Computationally, though it is
il easier to assign values of ecr, solve for p from Eq. (6.18) and then for the
corresponding T, from Eq. (6.20).

A computer program has been written for these computations. Values of
’j Ocr are assigned, starting with 9:Q+ 60, where 8 is very small, and computing

the corresponding values of p and To for each §0.

The results are presented graphically on Figs. 6.2 - 6.7 for the three values

values of eo. On the first three figures critical conditions appear as plots

v

{i of p versus duration time, Tocr. Note that as T°cr becomes larger and larger,

{f the corresponding value of p approaches pcrw (see Table 6.2). On the last

E! three figures (6.5-6.7), critical conditions appear as plots of (pTo) versus

9 duration time, Tocr' On these figures, as Tocr - o0, the correspondin;rvalue
of (pro)cr approaches the critical ideal impulse (see Table 6.1).
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Model 8

For this particular model, the static stability analysis is presented
in Section II. The geometry of the model is given in Fig. 2.3,

In evaluating the effect of preloading, three eccentricities are chosen
(8 = 0.005, 0.010,10.020), and for each é-value the system is initially
loaded quasi-statically with a po-load smaller than pcr-static. Then, the

system {s loaded dynamically. The following values are used in the dynamic

analysis:

e = 0.005 ; P = 0.955 ; p, = 0.35 , 0.40, and 0.50.
e = 0.010 : P, = 0.932 : P, = 0.30 , 0.40 and 0.50.
e = 0.020 ; P = 0-898 : p, = 0.30 , 0.40, aund 0.50.

First, the extreme cases (To*o and To~m) arc analyzed, by employing Eqs.

(6.11) and (6.12) respectively.

The ideal impulse, (pTo) is related to the initial kinetic energy by

the expression

1 ROy
°©  gin os" + @ cos es“ Lt

P
where es° is the stable stalic position (angle 6) under P, load.
The critical ideal {mpulse, (p7 ) .. is obtained by substituting Eq.

(6.11) into Bq. (5.21), or
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(p1 ) = P L"“ \93 )' UT (0u°>] (6.22)

ocr P, _ 1
sin 64 + e cos B¢

P
where e‘f is the unstable static position under Py load, and the expression

for the total potential is given by Eq. 2.5 by using P, wherever p appears in
the equation. The numerical results (or all @, P, combinations are presented

in tabular form >n Table 6.3,

Table 6.3. Criiical [deal fmpulse, (pTo)c

.
(Model #)
T =0.005 € =0.01 g = 0.02

Po (PTo) oy P, Pt )l Po (p7.) .,
0 200 0 100 0 50
0.35 192 0.30 88 0.30 42
0.40 104 0.40 76 0.40 36
0.50 139 0.50 62 0.50 29
0.955 0 0.932 0 " 0.898 0

Note that the first row results are obtained from Eq. (3.24) of

Section III. HNote also that as the value of P, approaches the value of
¢
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the static critical load the additionally imposed (critical) impulse
tends to zero. This is reflected by the results of the last row (Table

6.3).

The critical load for the case of To™® Py is obtained by the

oo
following steps, for a given 90, Py combinat ion,
P
a) Solve Eq. (2.6) given below, for Gso (stable position)
P
sin 9:
Py = (6.23)

Po -
tan es + e

(b) Static equilibrium positfions are characterized by Eq. (2.6) for

loading P, + p, or

gin 6

P+ P " tan 6 + ¢

(h.24)

(¢) Eq. (6.12) for this model is given below

sin29 - 2(p°+ p) (1 - cos 0§ + e sin 9) =

P P P
2 Yo _ . o, - o
sin es 2 Py (1 cocos + e sin e8 (6.25)

pt+pP
The simultaneous solution of Eqs. (6.24) and (6.25) yields euo and

Por ° Note that the same Eq. (6.25) must be satisfied at an unstable point
p,*P
(eu Y. The stability test may be used to ensure this, or

p+P
dzu,r"
3 po+p < 0
dé 2]

tl
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The numerical results for all e, P, comhinations are presented

in ctabular form on Table 0.4.

Table 6.4 - Critical Dynamic load, Per

(Constant Load of Tnfinite Duration: Model B)

e = 0.0005 e = 0.010 e = 0.020
po Pcr po+pcr PO pCf P(')‘H"C'l' po pCl’ p().H,Cl.’
@® [- ] [ -] [-.] o0

) 0.948 | 0.948 | N 0912] 0.912 0 0.85 0.85
0.35 0.60 0.95 0.30 0.62 0.92 0.30 | 0.59 0.89
0.40 0.54 0.94 0.40 0.52 0.92 0.40 | 0.48 0.88
0.50 0.45 0.95 | 0.50 0.42 0.92 0.50 | 0.38 0.88
0.955{ O 0.955 | 0.932] o 0.932 0.898{ 0. 0.898

Note that the first row results of Table 6.4 are taken from Section IV.
The results of the last row reflect the fact that if the system is loaded
quasi-statically up to the limit point, the additional suddenly applied load
that the system can withstand tends to zero.

Finally, for the case of constant load, p. applied suddenly for a
finite duration, Tye crivical conditrions are obtained from the following steps:

a) From the static stabiliiy analysis obtain 9:0 and 9:0 for each Py

b) Use of equation (6.9) yields

Py - P, .
2p (cos e’ - e sin e’ - cos Grr + e sin Bcr) =

P P p P
2.0 2.0 o_ - o _
sin Ou sin 9. 2po(cos 98 e sin e‘

S P
- cos eu° + e sin e"°> (6.26)
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vhere Gcr is the posi‘ion 8 at the instant of the rclease of the
force p (T = 7))

In Eq. 6.26, for a given geomelry ¢ and static load Py everything
is known (po. é,e:o and 8:0) excepi p and © or Therefore, Eq. 6.26

relates p and Bcr for a critical condiiion to exist.

2
c) Since %p+p°_<§§\ , then from Fq. 6.4 one may write
/

: - P 4P, P pH %

‘ a8 _ [0 ( oN_=Yo ] .

3 ar l__“'l‘ G. /r U,r (0‘ " or

\ 1

- PP P PP T

¢ ar = 0.0 (8°) - 0, (o) f e (6.27)
b

!

3

Integration from 1 = 0 to 7 = T and use of the expression for the

& total potential [see Eq. 2.5] yields
[ cr
- 2 Py 2
! T, = j { sin es - sin” 0 -
o o
O
p l
- P Po - T2
é! -2 (po+p) ole sin es - cos 98 - e sin 9 + cos 9)}" de (6.28)

b Note that Eq. (6.28) also relates ecr to p.

A critical condition is characterized by (p, To) that satisfies both
equations, Eqs. (6.26) and (6.28). This means that for a given relcase
time, To? find Per or for a given p find To Computationally, though,

cr
it is easier to assign values of ecr' solve for p from Eq. (6.26) and then

for the corresponding To from Eq. (6.28).

- A computer program has been written for these computations. Values
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P
of ecr are assigned, starting with es° + 60, where 6 0, is very small, and

computing the corresponding valucs of p and To for each §0.

The results are presented graphically on Figs. 6.8 - 6.13 for the
three values of 85° "On the first three figures critical conditions appear
as plots of p versus duration time, To Note that as o becomes larger
and larger, the corresponding value ofc; approaches P, (f;:e Table 6.4).
On the last three figures (6.11 - 6.13) critical condit:ons appear as plots
of (pTo)cr versus duration time, T°cr' On these figures, as Toct* o, the

corresponding value of (pTo)cr approaches the critical ideal impulse (see

Table 6.3).
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Model C.

For this particular model, the static stability analysgis is prcsentéd
in Section 11, The geometry of the model is given on Fig. 2.4 and the
static response on Fig. 2.6,

In evaluating the effect of prestress, three A-characteristic coef-
ficients are chosen (A = 5.0, 6.0, 8.0), and for eaclhi A-value the system
is initially loaded quasi-statically with a P," load smaller than the P
static. Then, the system is loaded dynamically. 7The following values

are used in the dynamic analysis.

A=535.0 Per ” 5.154 2.8, 3.4, 4,0

.o
©
n

A=6.0 ; Per * 6.000 ; p 3.2, 3.8, 4.2

A=8.0 ; P * 7.310 ; p =4.8, 5.4, 6.0

First, the extreme cases (7°~ o and T~ ©) are analyzed, by ehploy-

ing Eqs. (6.11) and (6.12), respectively.

The ideal impulse, (pfo), is related to the fnitial kinetic energy in

the nondimensionalized form E:ee Eqs. (3.22)] by the expression
1

(pr) = [2 ok ii (6.29)
PTO l .

Py
where 9s is the stable static position (angle @) under P, load. The

critical ideal impulse, (PTo)cr, is obtained by substituting Eq. (6.11)
into Eq. (6.13), or

1
(p1) , = /2 [ﬁ:° (e:°) - ﬁ:°(ep°)]z (6.30)
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wvhere euo is the unstable static position under P, load, and the expression

for the total potential is given by Eq. (2.2) by using po wherever p appears

in the equation. The numerical results for all Py combinations are pre-

sented in tabular form on Table 6.5.

Table 6.5 - Critical I[deal

Impulse, (pTy) ,»(Model C)

A=5.0 A=6.0 =80

PO (pTO)Ct po (pTo)cr Po (pTQ)Cr
0 6.00 0 6.71 0 7.93
2.8 3.06 3.2 3.39 4.8 3.04
3.4 2.32 3.8 2.67 5.4 2.31
4.0 1.32 4.2 1.67 6.0 1.44
© 5,156 0 6.0 0 7.31 0

Note that the first row results are obtained from Eq. (3.26) of

Section III

. Note also that as the value of P, apprvaches the value of

the static critical load the addtionally imposed (critical) impulse tends

to zero.

82

This is reflected by the results of the last row (Table 6.5).




The critical load for the case of T, <=, p o, is obtained b. the
following steps, for a given A, p, combination
l‘
a) Solve Eq. (2.17) given below tor rs“ (stable position) and s = o,
, 2
p, = (A-1-t¥o ) rPo 4 /A (6.31)
(o] S s
b) Static Saddle equilibrium positions are characterized by Eq. (2.19)

for loading P, * P oF

P+ P -JA
I = 0 —
2
(6.32)
r2 + 3s = A
c) Eq. (6.12) for this model is given below
9 -
(r2+ 952' 2/; r 4+ M)A % (A-r~-3sz\2- Z(PO+P\Q/A-T)=
X 2 | p 2 2 p
=t POy S(her 0 ) - g /h-r 0 (6.33)
S 2 s 8
p°+p
The simultancous solution of Eqs. (6.32) and (6.33) yicvlds T“ and Peyp
The numerical results for all A, P, combinations are presented in Tabular
form on Table 6.6,
g Table 6.6. Critical loads (Constant Magnitude, Infinite Duration - Model C).
Lq ' _
f | A =5.0 A=6.0 A = 8.0
Po Pcro Pot pcr. Po pcr, p0+ pcr. Po pcr. po'+pc§‘
t' 0 3.70 3.70 0 4,35 4.35 0 5.70 5.70
.
2.8 1,48 4,28 3.2 1.68 4,88 4.8 1 1.59 6.39
3.4 1.17 4.57 3.8 1,22 .02 S.4 [ 1.21 6.61
4.0 | .58 4,58 4.2 0.85 5.0 6.0 0.68 6.68
i —-
F 5.154 0 5. 1% 0.000f 0,0 0. 000 7.511 0.0 7.31
5 \ . e mm— e —
f:_

83

.
b N L e j
. PO = " Aot U D SRS S YU | = -




) 20N GER SA BEa. MR & oo Smi e en

Y M

oy, VACTWTETY,OE T o 'ﬁ" Ceath )
[ T ‘ﬂ‘ .

[

Note that the first row results of Table 6.6 are taken from Section IV,

The results of the last row reflect the fact that if thc system is loaded
quasi-statically up to the limit point, then the additional suddenly applied
load that the system can withstand tends to zcro.

Finally, for the case of constant load, p, applicd suddenly for a finite

duration, T critical conditions arc obtained from the following steps:

Po P» %
(a) From the static stability amalysis obtain T and LR for

h R
each p_
(b) Use of Eq. (6.9) yiclds
P P 2 2 p
[ ., 0 o _ o
2p (r - v _=(r %+ 9s 2/A 24N+
22 P P

p p p
1 A 0y2. o_ 2_ 1. o o_
+ 2 (A ru ) (rs JK) 2(A rs )+ ZPO(ﬁl rs

) (6.34)

where LI is the position r at the instant of the relecase of the force p (t=r ).
o

In Eq. (6.34), for a given geometry, A, and Static load, pb, cverything is known

P P p
(o] (] o e N
(po, e, £, I and Su ) except p and rcr' (herefore, Eq. (6.34) relates p and
r _ for a critical condition to exist.
cr
_P+P° 1 ‘2. dr. 2
{¢) Since T = 3(L+s )(5;) , then from Eq. 6.4 we may write
+
ar ‘_Po P P, _Pb+p \wk
£ () (A o
_P°+P P _P°+Pk )
dr = LUT (rs - UT .f,S)J dr (6.35)

Invoking the same techniques we used for the same problem but without prestress
in Section Vv, the critical time T, is computed on the symmetric path s - o.
Integration {rom T = 0 to 1 = T, and use of the expression for the total

potential [see Eq. 2,13) yields

r
N 2 O 1 21 Po, 2 ~2 1
To J o [_(rs - N LR A I G/ 3 (A -1)2-
l's o]
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16,

P
-2 @ap -t |7 dr (6.36)

Note that Eq. (6.34) also relates L to p.

AA critical condition is characterized by (p, To) that satifies both
equation, Eqs. (6.34) and (6.36). This means that for a given release time,
Tyt find P OF for a given p find Tocr. Computationally, though it is easier
to assign values ofl:cr, solve for p from Eq. (6.34) and then for the corre-
sponding L from Eq. (6.36).

A computer program has been written for these computations. Values of
rcr are assigned, starting with r:°+ 6r, wherc §r is very small, and computing
the corresponding values of p and 7  for each ér.

The results are presented graphically on Figs. 6,14 - 6,17 for the three
values of A. On the first three figures,critical conditions appear as plots of
p versus duration time, T, Note that as TS becomes larger and larger, the

cr cr
corresponding value of p approaches P.r (sce Table 6.6). On the last three

(69

figures (6.17 - 6.79) critical conditions appear as plots of (p-ro)cr versus

duration time, To . On these figures, as To T O the corresponding value of
cr cr
(pTo) approaches the critical ideal impulse (see Table 6.5).
cr
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SECTION VII
THE INFLUENCE OF SMALL DAMPING - CONSTANT LOAD OF FINITE DURATION

Statement of the Problem

In this section the effect of small damping 6n critical conditions

and estimates for dynamic stability of the models are investigated. The

problem of constant load for finite duration is considered here as stated
in Section V, but small damping is introduced by a dashpot connected in
i‘ parallel with a spring.

. Since damping is small, thc trajectory of the damped system could

be thought of as a perturbation around the trajectory of the undamped one.
"" This is the key assumption which helps find the estimates for the damped
system as a sum of the corresponding estimates for the undamped system
plus a product of the small damping coefficient, u, times a quantity

depending only on the model geometry.

General Approach

Damping forces F are introduced by a dashpot and are equal to

i ( MNEERICE~ M

F = uL

SN e

wvhere p is the damping coefficient and L the trajectory of the dashpot.

‘ A nondimensionalization, ;I, of the damping coefficient p could be
obtained by

. . 1

.. 2y

P vhere k is the elastic constant of the spring and A a normalizing coefficient

E. having dimension of time.
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Furthermore the nondimensionalized dissipated energy, D, is

expressed by
D=4 f'LdL (7.1)
L

whereLpidL stands for the nondimensionalized dissipated energy when

& = 1. The balance of energy is expresscd by the equations

i‘-P_,,ﬁg.,.ﬁ:Ofor O<'r<1'o (7.2)
-0 - -
and T + UT +D =¢C for To <7 (7.3)

where C is a constant Eq. (7.2) characterizes the energy balance during
thevaction of the load, p, and Eq. (7.3) after the release of P.
Moreover, the continuity and both kinetic and dissipated energies

at the release of the load yields the constant coefficient C, equal to

c =[ﬁ;-':f]|
TO

With this value of C, Eq. (7.3), the balance of energy after the action

of the load P becomes

=0 for T <-1T (7.6)

<0 =0 , = =P _ -o]
T + UT +D +[UT UT

T
o

Since a system is called dynamically stable if it is not allowed

to reach the zero-load unstable equilibrium point, Lz » with the least

o
T

velocity (Kinetic Energy) at Lg, must be less than the potential energy of

potential energy, the total energy of the system, £%= 3° + io. with zero

the system at that point.
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Consequently the balance of enexrgy for v > T, expressed by Eq.

(7.4) gives the critical condition

=P _ ~o]
o [UT UT

Ly

(7.5)
T o
Ly

T

ﬁ°‘ =D
o

Furthermore the nondimensionalized damping coefficient i s very
small 6: << 1) and the trajectory of the damped system could be thought
of as a perturbation around the undamped one. The critical displacement,
L:r’ the displacement which guarantces stability as long as the applied

force is released before the system reaches it, may be expanded in a

Taylor's series as,

P P - P 2
Lcr OLcr te chr + oW (7.6)

wvhere oLgl is the critical displacement for the same problem but without
the influence of damping.

Use of Eq. (7.1) into Eq. (7.5) yields

10
u
i | o= -y [ iaud@® - 5] 7.7
03 o= S LdL-[UT a; |p a.n
(T} 0 L
Invoking the expression for L:; from Eq. (7.6), the quantity
[ﬁg - ﬁg] may be expanded in Taylor's scries also.
cr ;
- =P _ =0 p
aju. = u L 2
P - G « [P - §° ydh Y. R T I (A G WY T
o - 7] (G -a) «il s e
L S B L
cr o cr ol
cr

(7.8)

where j stands for the degrees of freedom of the model.
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Introducing Eq. (7.8) into Eq. (7.7) and scparating terms of the

same order of magnitude, yiclds two cquations

-\ L it -
= | - p 7.9
"'r',_° [1 T "'r] l(‘,‘ (7.9)
u cr
and for one degree of frecdom trajectory
LO
Yo
Pf(p)d 9
0
B .10
P
[U'r B UT]‘ LF
. o cr
. P
After cvaluating l!'cr’ the critical time t, for the release of the
cr

load P is found by the balance of energy cquation (Eq. 7.2).
It is simply mentioned that Eq. (7.9) gives the displacement estimate
oL:; for the undamped system and it is the same as that given in Section V.

On each model Eqs. (7.9) and (7.10) will be applied and the correction

of the displacement, lLP

or (# = 1), will be found. Furthermore, corrcctions

for the critical time, To ° will be computed also.
cr

Model A - Géomctricully Lmperfect Model

Consider model A exhibited in Section II but under the influence of

small damping. Damping is introduced by . dashpot comnected with the spring

as shown on Fig. 7-1.

| Lt dat' aulauib ausU N g

Fig. 7-1 CGeometry of Model A with Lamping
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1f  is the damping coefficient, the nondimensionalized dissipated

energy, D, 1is expressed by
i IR M 75 2
D= 2”“£‘Ps‘“(4'2>d'4’ (7.1L)

It is assumed that the velocity of the dashpot is equal to that of
joint B, and that ¢ is the trajectory from 0, to 0.

Applying the nondimensionalization

T =E t , m =Jﬂz_u and (7) = 'aa; (7.12)
m

and recalling that the unstable position, L;, on the zero load poten-

T

tial for the undamped system is given by 0 = 5 the Eqs. (7.9) and (7.10)
yleld
P (J-Z_ - A/I + gin 60)2
oe = arc cos {cos 60 - B } (7.13)
cr
T
nd 180 = [ 2 a1 -v)d sin 0P (7.14)
a 1%y 9 ¢ sin 9o/ p .
The evaluation of the integral below is needed in Eq. (7.14)
2 . o
I = o P sin &4 2,, doq; (7.15)
o

Recalling the energy equation for the undamped system, Eqs. (5.1) and

(5.2)

2
.2
St [./l.-nlno(p - Jlﬂineo ] -p (cosg - cos 8) =0

0 ~c?<o ct (7.16)
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and

«2 - 2 ] . _n
- -O-L/l-l-sinow - \fl+sxn9(,] = p(c"h”t)co:'uecr)""oecr ¢ 7 3

Hence the integral I becomes

eP
ocr pm— T S T2 B 4

I = é[‘ /p(:os 8 -cos o) - [\/'l+sxn"'n - J14s lllOO] sin (-Z -0—2— do +
o

—

/2 / 2 i)
Py - - ey Gind o A
J' p(coseo-cosoec [\/l-lsinow J1+s1n00] sin ([4 5 ) do:p

o Cr

The critical time T, may be found by invoking Eq. (7.2) for

(7.17)

(7 18)

Ccr
0<T<T_. Thus
o
28
T = J‘ d0 —_—
o = R Z = JBo Vg
cr 90 \[p(coseo-cose) - 14sino- \/l+sm9°] -%J ) sin Z " gp
[4]
(7.19)
Expanding To in power scries of .I we have
cr
T _ T +pooT . -2 o
°r 0 o i LI + 0 W) (7.20)
where
P
oecr
oo =] — (7.21)

cr eJo Jo(cos eo'." cost) - ML ¥ 5ind - Ji'zﬁi‘r@o]z

is the critical time for the undamped system, and

0 ®
b ein2 (L-O de
3 1 po% {[g potn’ G0}
T o= —2|_ =_"-ocr o 573/, *
1 Ocr diw=0 2 90 [p(coseo-cose)-(ﬁ+sin9 - J1+sln9°) Y7/2
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+ 1 crx
. - Py .l Mesic 6P - Z
v p(cos® cos00cr) [\l+sin090r Jl+sin0° ] (7.22)
Note thatlegl is a lunction of paramcters related to the undamped
system only. The same holds true for .71

lo

The governing cquations for finding critical conditions in the
presence of small damping (u << 1) arc Eqs. (7.13), (7.14), (7.21) and (7.22).

Note that Eq. (7.18) is employed in Eq. (7.14). These four cquations relate

the given small damping coefficient B, the applied load p, and the time parame-

ters SP and 19£r° A critical condition is expressed in terms of a load
ocr

level p and the corresponding time To =oTo + JlTo . Thus, a critical con-
cr cr cr

dition may be found by posing the problem as follows: for a given small
damping coefficient y, and load level p, find (through the simultaneous solu-

tion of the four governing cquations) the corresponding critical time para-

. 4 P
meter T and v and position paramclers 0 and .
5, o ocr i ocr, P P > oder lecr Note that

the range of p-values (assigned) must be greater than dynamic critical load

for the case of a suddenly applicd constant load of infinite duration, with-

out damping. The computational procedurc involves the following steps: (a)
assign a p-value and compute 09:; from Eq. (7.13), (b) Employ Eq. (7.18) in

Eq. (7.14) and solve for 10:;, (¢) From Eq. (7.21) solve for oTo_ , and

finally (d) Employ Eqy. (7.22) and solve for "o ° AN computer pizgram is
written to accomplish the solution and numcricﬂlC:csults are gencratced for three

values of the imperfection parameter 00(0.005, 0.010, and 0.020). These

results are presented on Table 7.1.
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Table 7.1. Critical Conditions for Constant Lol of Finite puration in
the Presence of Damping (Model A)

5 o " oo o Ocr
; 0.005 0.45 31.25 29.61
E 0.50 19.55 11.15
3 1.00 8.97 1.99
- 3.00 3.42 .55
5.00 2.63 0.35
;‘ ‘ 10.00 2.11 0.20
i: 50.00 0.63 0.06
. 0.010 0.41 33.23 78.53
' 0.45 21.14 12.85
- 0.50 12.32 7.30
1.00 7.78 1.64
F 5.00 2.00 .31
f 10.00 1.24 .18
: 50.00 0.42 .07
;m 0.020 0.44 13.69 7.47
o 0.55 9.98 3.62
t,‘.k. _ 0.65 6.87 2.53
- 1.00 5.85 1.30
5.00 1.91 .27
. 10.00 0.96 .16
B 50.00 0.39 .06
o
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Note that, since a critical condition corresponds to a set of

P, 10 values, o small damping coefficient ﬁ has o stabilizing effect.
cr
This effect, though, is very small. For instance, at the high valucs

of the load p (say for 85= 0.005, p = 10) the corresponding value for
T (Lf ¢ = 0.04) s 2.110+ 0.008 = 2.118. Remember that the p ~ 7
cu::e for the undamped system (sce Fig. 5) is very steep at the high pfr
value and virtually {lat at the low valucs of p. On the other hand,
vhen p = 0.45 (a value close to Py = 0.432) the corresponding critical

[ ]

time is T - 31.25 + 1.184 = 32.434. Since the curve is very flat at this
cr

load p-value, onc may conclude that the effect of small damping is virtuelly

negligible.

Model B

Consider model B discussed in Section II, but under the influence

of small damping. Damping is introducced by a dashpot connected with the

spring on Fig. 7-2.

P

Fig. 7-2. Geometry of Model B with damping.,

o0
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If u is the damping coefficient, the nondimensionalized
dissipated emergy, D, is expressed by

0

b = —Lo = 2 gg (7.23)
1 2 k
3 ko 0

It is assumed that the velocity of the dashpot is equal to that
at joint C and ¢ is the trajectory from 0 to 0,

Applying the nondimensionalization

-2k R By 2
T AR T p and () 3 (7.24)

and recalling that the unstable position, L:, for the "zero load' potential

of the undamped system is given by e: = =, then Eqs. (7.9) and (7.10) yield

2
2p (1 - cos oecr + e sin oocr) = 1 (7.25)
and %
d @
lcr 2p (sin oecr + ¢ cos oecr)
Thus for the evaluation of the integral
n
i [ ]
I = Ioow do¢ (7.27)

the balance of energy expressions for the undamped system Eqs. (5.1) and (5.4)

are recalled. Hence

2 2 - ~ 3
o + sino¢ -2p (1 - cos @ + e sinow) = 0 for 0<o(p'\06cr (7.28)
and
? 2 6 - . a - T 7.2
ot sin” @ 2p (1 cosoﬂcr +e slnoecr) 0 for 06;;°y<2 (7.29)
101
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Integral I becomes

0 = \
1 J‘o cr Jz—p ¢t - cosocp +e sinotp) - sinzocp d o(p +
0

n
¢ f2p (1 0 _+e 0 2 0
J2p (0 - cos 6 +e sino cr) - sin o do‘P (7.30)

o Ccr

The critical time, To * may be found by invoking Eq. (7.2). Thus

cr
ef:’r do
= (7.31)
"o - 2 -r9 o
cxY oJZp(l-cosB+esine)-stne-p.jocpdq;
Expanding T in power series of i (1 << 1) one obtains
cr
T = T 4+ T +o uh
° oo k17 (] (7.32)
cr cr cr
where
e
oo =f 9 (7.33)
cr 0 J2p (1 - cos 6 + ¢ sin e) - sinze
is the critical time for the undamped system, and
b‘ro L9 er JQow de
o = |- 3l - 7-3/2%°
er 3 | p=0 "9 [(2p(1-cos®+esind)-sin"8]
1"5:
+ (7.34)

2p 1 - cos ® _+c¢ sin 6 )~sin20
o c¢r ocr ocr

Note that lefr is a function of paramcters related to the undamped

system parameters only. The samc holds true for lTo .
cr
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The governing equations for finding critical conditions in the presence
of small damping (s << 1) are Eqs. (7.25), (7.26), (7.33) and (7.34).
Note that Eq. (7.30) is employed in Eq. (7.26). These four equations relate
the given small damping coefficient ;, the applied load p, the time para-

P P
T ar: .
neters °T°cr and 1 °cr’ and the position purameters oecr and lecr A

critical condition is expressed in terms of a load level p and the corre-

sponding time 7 =7  + ;110 . Thus, a critical condition may be found
er cr cr
by posing the problem as follows: for a given small damping coefficient p

and load level p, find (through the simultanecous solution of the four

overning equations) the corresponding critical time parameters, T " and
8 (o] Ocr
e P
e .
ITocr, and position parameters, oler and locr Note that the range of
p-values (assigned) must be greater than dynamic critical load for the case

of a suddenly applied constant load of infinite duration, without damping.
The computational procedure involves the following steps: (a) assign a
p-value and compute 09:: from Eq. (7.25), (b) cmploy Eq. (7.30) in Eq. (7.26)
and solve for 1021 » (c) from Eq. (7.33) solve for OTO » and finally

cr

(d) employ Eq. (7.34) and solve for o *
cr

A computer program is written to accomplish the solution and numerical
results are generated for three values of the cccentricity parameter e
(0.005, 0.010, and 0.020). These results are presented in Table 7.2.

Note that, since a critical condition corresponds to a set of p, To
values, a small damping coefficient ﬁ has a stabilizing effect. This °
effect, though, is very small. For instance, at the high values of the
load p (say for c = 0.005, p = 10) the corresponding value for 10 (ir

cr

; = 0.04) {s 0.16 + 0.0064 = 0.1664, Rcmember that the p-T, curve for
cr
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the undamped system (sce Fig. 5.3) is very stcep at the high p-value and

b ok o S

v . = >
HEVBAGAS ~~ SLEUTUNOL LI A g ot -
Lot Lo, PR et

. [T S 1 I N T

virtually flat at the low values of p. On the other hand, when p = 0.95

( a value close to Per = 0,948), the corresponding critical time is

To ™ 1.93 + 0.055 = 1.985. Since the curvc is very flat at this load

cr
p-value, one may conclude that the effect of small damping is virtually

negligible.

LB Al L A2 cRt B S MEN S 40X S8 Aot )
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R l,’.'
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Table 7.2. Critical Conditions for Constant Load of Finite Duration in
the Prescnce of Damping (Model B).
! -
3 e P oTocr lTocr
Ei 0.005 0.95 1.93 1.39
1.20 1.28 1.04
é: 1.50 0.75 0.80
[ 5.00 0.23 0.27
? 10.00 0.16 0.16
gi 100.00 0.029 0.04
E; 0.01 1.15 1.22 10.04
# 1.70 0.65 2.06
5.00 0.27 0.33
4 10.00 0.18 0.14
20.00 0.11 0.07
100.00 0.024 0.06
0.02 1.10 0.78 13.96
1.50 0.46 2.90
5.00 0.16 0.33
10.00 0.092 0.14
2 30.00 0.048 0.04
75.00. 0.022 0.02
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Model C

In this article, the effect of small damping on a two-degree of frcedom
model (model C) is investigated. Damping is introduced through a dashpot
connected with the extensional spring as is indicated on Fig. 4.2.

The damping coefficient is cqual to u.

Qo™ I RN a0

b oAk Al sk

g Fig. 7-3. Geometry of Model C with damping

.’ Since thc nondimensionalized extension of the spring is
w = h-rt?.3s? (7.35)
7' the rate of change with respect Lo time is cqual to
.(.I.! = - 2‘}r - 3“ 7 6
@ $8 (7.36)
¢
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1fu = ——l—;- B , the nondimensionalized damping cocfficient and D the

rdl T,
P St
i PERPE
W

(&~

= 2 nondimensionalized dissipated enerpy, then

-

R b= i [ aw (7.37)

and with the right hand sides of the Eqs. (7.3%) and (7.36), the non-

dimensionalize dissipated energy becomes

vﬂ-'.'rlv'v
. . A

”yY

D = 4 ¢ (2fr + 635) (2rdr + 6sds) (7.38)

(g
A

9 i3t
. 1‘ K A

-

vhere f stands for the line integral along the trajectory of the system

in the r-s plane. Furthermore, the lowest potential unstable equilibrium

position of the "zero load" potential is the saddle point with

;.’ ﬁ; - % (A - 1) (7.39)

Recalling that for the undamped system the trajectory, which must be followed
i for maximizing the added energy when p is acting, lies on the r axis, and

recalling Eq. (7.9), it is found that

p
R Z% (A-1) + /A (7.40)

However, the trajectory that the system follows from the release of the
load until it reaches the unstablc saddle point (r =,JK - % sy S =+ @/K:-%)g)
is not known. Since Eq. (7.38) glves the dissipated emergy during this

period of time as

Jh-3

D = ;'133 2 o +6s8" )’ Car ,
P
r

0o cr

a lower bound for the absolute value of D may be found, if one considers
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the path, s = 0 and M - % < r+ JR. Note that r = /A is the starting
point and r = JA - % is the r-coordinate of the saddle point on the " zero
load" potential.

Following the same steps as in the brachistochrone problem (see Appendix
A), it is proven that the symmetric path s - 0 is the minimizing path for

D min. Then from Fq. (7.10)

-3
1 .
1':1— = - 5;_1 2 4t a (7.41)

P P .= P -2
reo= o rl Hhor +o @) (7.42)

Furthermore, recalling that the total cnergy for the undamped system along

the r axis ( 8 = 0) is expressed by

T+ a-Be - - -0 =0, (7.43)
then
@ = - fapR-1)-h-1DHE-2 (- /B (7.44)

Hence, Eq. (7.41) becomes

id
o cr . ]
R R R N U S L U S
N/
VA3 foo 2,2 2 r
et Jap WA - k) - (6= e - 2(e =) (7.45)
0o Ccr

In addition, the critical time T, May be found by invoking Eq. (7.2), which
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expresses the balance of energy for 0 < 7 < Tor Thus,

P
Ter
To. - } dr (7.46)
- pf,
or WA Jip (Fery - -t -2 (-SB) - B[Rl ax
JA
and expanding 7_ in power series of B G << 1), one may write
Te = oo +y o O @ (7.47)
- cr cr cr
;.‘ vhere
=
& r P
e o cr
= R =" [ - de (7.48)
[ - © Oy ®cr|p=0 o ! 2.2 2
- Jop WA=r) - (A -xH" -2 (v -VB)
-
- and r
- . LI TP ,ﬁp WR-x) = (h-x3)2 = 2 (x-JB)% ax
. ] O . o.cr N i
2
\ Yoo ¥ uso & WpWh-n - -tHi-2 ¢ -/H
lrcr
- - 3 (7.49)
E \/I‘P W-orcr) s Aot m 2 (T =/B)
Note that lrc: is a function of the undamped system only. The same holds
l-' true for 17 .
- cr
The governing equations for finding critical conditions in the presence
of small damping (u<< 1) are Eqs. (7.40), (7.45), (7.48) and (7.49).
L' These four equations relate the given small damping coefficient Ia., the
-
F: applied load p, the time parameters ofo and 7o * and the position
2 P P cr cr
f parameters r._ and 1Tcpe A critical condition is expressed in terms of a
. -
b load level p and the corresponding time -roc: °T°cr+ ul'roct. Thus, a
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critical condition may be found by posing thc problem as follows: for a

given small damping cocfiicient ; and load level p, find (through the

simultaneous solution of the four governing cquations) the corresponding

critical time paramcters, T and 7T , and position parameters, rP
o o.. 1 Our o cr

P
and 1r~r. Note that the range of p-values (assigned) must be greater than
-~

dynamic critical load for the case of a suddenly applied constant load

— L g
. v RERTRIAE o SN

v

of infinite duration, without damping. The computational procedure involves

®

the following stcps: (a) assign a p-valuc and compute orgi from Eq. (7.40),

P
(b) employ Eq. (7.45) and solve for lrcr (¢) From Eq. (7.48) solve for

T Ty l

T » and finally (d) employ Eq. (7.49) and solve for T .
0 O.r 1 Oy
A computer program is written to accomplish the solution and numerical

) ‘x' '...

results are generated for three values of the parameter A (A = 5.0, 6,0, 8.0).

TS Yy
f

PR LR SR e e T ~r
PR et o T
. R [ o

v

These results are prescnted on Table 7.3. Note that, since a critical

condition corresponds to a set of p, TS values, a small damping coefficient
cr
p bas a stabilizing effect. This cffect, though, is very small, For

instance, at the high values of the load p (say for /=5, p=1C) the corresponding

value for _  (if 2=0.04) is 0.32 + 0.029 = 0.349, Remember that the
cr
p-T, curve for the undamped system (sce Fig. 5.5) is very steep at the
cr
high p-value and virtually flat at the low valuces of p. On the other hand,

when p=4.1%a value close to Per =3,71) the corresponding critical time
B is T, = 1.32 + 3.18 = 4.50. Since the curve is very flat at this load
- cr
'ﬁ p-value, one may conclude that the cffect ol small damping is virtually
e negligible.
]
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Table 7.3, Critical Conditions for Constant load of Finite Duration
in the Presence of Damping (Mode! C)

A P oTocr lTocr

5.0 4.15 1.32 79.66

4,20 1.29 33.11

4.30 1.13 16.50

5.00 0.78 4,12

8.00 0.39 1.10

10.00 0.32 0.74

30,00 0.11 0.10

70,00 0.41 0.03

100.00 0.29 0.02

6.0 5,25 1.70 131.11

5.50 1.52 5.12

7.00 0.60 2.9

10.00 0.39 1.57

12.00 0.34 0.78

20.00 0.18 0.31

E 30.00 0.13 0.16
i 50,00 0.078 0.06
; 80.00 0,042 0.03
3 8.0 7.75 0.71 56.31
E 8.50 0.65 6.12
: 9.00 0.55 4.3
; 15.00 0.23 0.99
é 20.00 0.21 0.68
; 30.00 0,14 0.3
- 40,00 0.089 0.11
] 80.00 0,052 0.05
; 150,00 0.018 0.01
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APPENDIX A. THE BRACHISTOCHRONE PROBLEM

Constant Load of Finite Duration-Model C.

The problem of dynamic stability of model C (Snap-through Model)
subjected to constant load of Finite Duration and discussed in Section V,
reduces to finding the brachistochrone path starting from point (r, s) =

Q/K, 0) and reaching the vertical r = r,

= 2 (A-
= - g5 D) @a.1)

where p is the nondimensionalized load parameter and A is a geometric
parameter of the model. Since, from physical considerations, the
wotion, in the interval JA-3 <r 5JJK follows the steepest descent path,
which is the symmetric path (s8=0), the brachistochrone problem will be
restated as follows: find the path that requires the smallest time, for
the system to reach positions characterized by r = L and starting from
(r = JK:E, 8=0) with s’ =0.

The total Potential Energy of the system is given by Eq. (2.13) as

u - (c%4+9s%-2/Reeh) + 3 (A-r-389)2- 2p¢/R-r) (A.2)

Recalling Eq. (5.1).
=P P

UT+7r'=0for05¢s-r° (A.3)
=P_1 2, dr.2
where T = 7 (I+s'™) (dT) (A.G)
" O
and ) 3¢

then the brachistochrone problem reduces to extremizing the following integral

Ter . Ter
1= I (- liﬁ:;)dr = f X (r,s,s' )dr (A.5)

JA3 0 Wy AT

by considering paths which start at r = ,/A-3 and 8 = 0 with s'= 0 and reaching

positions characterized by r = Ty (constant).
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The Euler-Lagrange equation and the associated boundary conditions for

this brachistochrone problem, Eq. (A.5), are (see reference [26])

(o %
=
I

d
Ss " aris'” 0 (A.6)
dX .
s"r -odslr =0

cr cr

Note also that s = s8' = 0 r =./A-3 .

' 2
Since X = - 1++P » Eq. (A.6) ylelds
-2U
T
: 2.2 ,
& + (8" + 8,3)r+9ss -/A=~(A-r°-35") (r+3s8')+p
=P
UT
2.2 98-3s(A-r>-3s2)
Uy

One solution to Eq. (A.7), that satisfies the boundary conditions, is given
by the path s=0. However, there is no guarantee that path s=0 is the unique
extremal path of the variational problem. Suppose that the solution to Eq.

(A.6) bifurcates at a point (r = r s = 0) where LIS < J/A-3. oObviously

b
s'= 0 at that point.

However, considering a closed domain D = [r,s,s'], such that s < § and

8' < 8 where § is a very small positive number (6<<1) with the point (rb .

o, 0)' lying in the interior of D and G: <- w (w > 0 any proper positive number)

everywhere on D, the function

2 .2 '
f£(r,s,s") --(a'+-'3)r+qss‘“ﬁK’(A:; -38") (r+388')+p
U
T

2 98-3(A-r2-38)
—p
Uy

-(1+s'2

) (A.8)
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is continuous and satisfies the following Lipschitz condition on D.
|f(r,;,§') - f(r,s,s')|<L1|5'-s'|+L2|;-s|

Since higher order terms in s and s' are cancelled out and L, and L_ are

1 2
equal to
2
L, = max ‘rijESQ-r )r+p== male(r,s)
U'1‘
9-3(A-r?
and L2 = max |—£1;—l| = max Qz(r,s)
U
T

The existence of L1 and L2 is guaranteed by the continuity of the functions
Q, and Q, on D. See reference (27].

Recalling the Uniqueness theorem (Picard-Lindelgf) for a differential
equation of second order, see reference [28], the initial value problem,

composed by the differential Eq. (A.7) and the boundary conditions slt =

b
»'lr = 0, used as initial conditions in the mathematical sense, admits a
b
unique continuous solution in the interior of D. Therefore, the solution

to Eq. (A.7) which is initially symmetric does not bifurcate at any point on
the r-axis. Consequently the symmetric solution is unique.

Since the total potential U: is symmetric with respect to the r-axis, the
extremal path, s=0, cannot be a minimax. Moreover, around any path there
always exists another path yielding higher value for the time of motion
[integral I expressed by Eq. (A.5)]. Thus, the extremal path 8=0 cannot be a
maximal path either. Therefore, s=0 is the brachistochrone path of the problem.

Note that path s=0 is not a ficticious path but a real one, since it

satisfies the equations of motion.

d2r 2.2
= - 2ArA-1-r*-38%)-p + 1= 0

dr
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and
2
48 .6 (A-3-r2-3s%) = 0
ar

given in reference [30].
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